
 

Chapter 27 

27.0 Objectives 

At the end of this lesson, students should be able to, 

• Identify conditions necessary for wave interference. 

• Apply the findings of Young’s double-slit experiment. 

• Identify the limits of resolution and Rayleigh criterion. 

• Identify the significance of polarization of light waves. 

27.1 Introduction 

This chapter covers interference, Young’s double-slit experiment, Rayleigh criterion, 

polarization, and related calculations. 

We know that visible light is the type of electromagnetic wave to which our eyes respond. Like 

all other electromagnetic waves, it obeys the equation, 

C = f λ 

  

where c = 3×108m/s is the speed of light in vacuum, f is the frequency of the electromagnetic 

waves, and λ is its wavelength. The range of visible wavelengths is approximately 380 to 760 

nm. As is true for all waves, light travels in straight lines and acts like a ray when it interacts 

with objects several times as large as its wavelength. However, when it interacts with smaller 

objects, it displays its wave characteristics prominently. Interference is the hallmark of a wave, 

and in Figure 27.1, both the ray and wave characteristics of light can be seen. The laser beam 

emitted by the observatory epitomizes a ray, traveling in a straight line. However, passing a pure-

wavelength beam through vertical slits with a size close to the wavelength of the beam reveals 

the wave character of light, as the beam spreads out horizontally into a pattern of bright and dark 

regions caused by systematic constructive and destructive interference. Rather than spreading 

out, a ray would continue traveling straight ahead after passing through slits. 



 
Figure 27.1: (a) The laser beam emitted by observatory acts like a ray, traveling in a straight 

line. This laser beam is from the Paranal Observatory of the European Southern Observatory. 

(credit: Yuri Beletsky, European Southern Observatory) (b) A laser beam passing through a grid 

of vertical slits produces an interference pattern—characteristic of a wave. (credit: Shim'on and 

Slava Rybka, Wikimedia Commons)  

27.2 Light as a wave 

Light has wave characteristics in various media as well as in a vacuum. When light goes from a 

vacuum to some medium, like water, its speed and wavelength change, but its frequency f 

remains the same. (We can think of light as a forced oscillation that must have the frequency of 

the original source.) The speed of light in a medium is v = c/n, where n is its index of refraction. 

If we divide both sides of equation c = fλ by n, we get c/n = v = fλ/n. This implies that v = fλn, 

where λn is the wavelength in a medium and that 

λn = λ / n  

where λ is the wavelength in vacuum and n is the medium’s index of refraction. Therefore, the 

wavelength of light is smaller in any medium than it is in vacuum. In water, for example, which 

has n =1.333, the range of visible wavelengths is (380nm)/1.333 to (760nm)/1.333, or λn = 285 to 

570nm. Although wavelengths change while traveling from one medium to another, colors do 

not, since colors are associated with frequency. 

Figure 27.2 shows how a transverse wave looks as viewed from above and from the side. A light 

wave can be imagined to propagate like this, although we do not actually see it wiggling through 

space. From above, we view the wavefronts (or wave crests) as we would by looking down on 

the ocean waves. The side view would be a graph of the electric or magnetic field. The view 

from above is perhaps the most useful in developing concepts about wave optics. 



 
Figure 27.2: A transverse wave, such as an electromagnetic wave like light, as viewed from 

above and from the side. The direction of propagation is perpendicular to the wavefronts (or 

wave crests) and is represented by an arrow like a ray.  

27.3 Huygens’ Principle 

The Dutch scientist Christiaan Huygens (1629–1695) developed a useful technique for 

determining in detail how and where waves propagate. Starting from some known position, 

Huygens’ principle states that: 

Every point on a wavefront is a source of wavelets that spread out in the forward direction at the 

same speed as the wave itself. The new wavefront is a line tangent to all of the wavelets.  

Figure 27. 3 shows how Huygens’s principle is applied. A wavefront is the long edge that moves, 

for example, the crest or the trough. Each point on the wavefront emits a semicircular wave that 

moves at the propagation speed v. These are drawn at a time t later, so that they have moved a 

distance s = vt. The new wavefront is a line tangent to the wavelets and is where we would 

expect the wave to be a time t later. Huygens’s principle works for all types of waves, including 

water waves, sound waves, and light waves. We will find it useful not only in describing how 

light waves propagate, but also in explaining the laws of reflection and refraction. In addition, we 

will see that Huygens’s principle tells us how and where light rays interfere. 



 
Figure 27.3: Huygens’s principle applied to a straight wavefront. Each point on the wavefront 

emits a semicircular wavelet that moves a distance s = vt. The new wavefront is a line tangent to 

the wavelets.  

Figure 27.4 shows how a mirror reflects an incoming wave at an angle equal to the incident 

angle, verifying the law of reflection. As the wavefront strikes the mirror, wavelets are first 

emitted from the left part of the mirror and then the right. The wavelets closer to the left have 

had time to travel farther, producing a wavefront traveling in the direction shown. 

 
Figure 27.4: Huygens’s principle applied to a straight wavefront striking a mirror. The wavelets 

shown were emitted as each point on the wavefront struck the mirror. The tangent to these 

wavelets shows that the new wavefront has been reflected at an angle equal to the incident angle. 

The direction of propagation is perpendicular to the wavefront, as shown by the downward-

pointing arrows.  

The law of refraction can be explained by applying Huygens’s principle to a wavefront passing 

from one medium to another (see Figure 27.5). Each wavelet in the figure was emitted when the 

wavefront crossed the interface between the media. Since the speed of light is smaller in the 

second medium, the waves do not travel as far in a given time, and the new wavefront changes 

direction as shown. This explains why a ray changes direction to become closer to the 



perpendicular when light slows down. Snell’s law can be derived from the geometry in Figure 

27.5, but this is left as an exercise for ambitious readers. 

 
Figure 27.5: Huygens’s principle applied to a straight wavefront traveling from one medium to 

another where its speed is less. The ray bends toward the perpendicular, since the wavelets have 

a lower speed in the second medium.  

27.4 Young’s Double-Slit Experiment 

What happens when a wave passes through an opening, such as light shining through an open 

door into a dark room? For light, we expect to see a sharp shadow of the doorway on the floor of 

the room, and we expect no light to bend around corners into other parts of the room. When 

sound passes through a door, we expect to hear it everywhere in the room and, thus, expect that 

sound spreads out when passing through such an opening (see Figure 27.6). What is the 

difference between the behavior of sound waves and light waves in this case? The answer is that 

light has very short wavelengths and acts like a ray. Sound has wavelengths on the order of the 

size of the door and bends around corners (for frequency of 1000 Hz, λ = c/f = 

(330m/s)/(1000s−1) = 0.33 m, about three times smaller than the width of the doorway). 

 
Figure 27.6: (a) Light passing through a doorway makes a sharp outline on the floor. Since 

light’s wavelength is very small compared with the size of the door, it acts like a ray. (b) Sound 

waves bend into all parts of the room, a wave effect, because their wavelength is similar to the 

size of the door.  

If we pass light through smaller openings, often called slits, we can use Huygens’s principle to 

see that light bends as sound does (see Figure 27.7). The bending of a wave around the edges of 



an opening or an obstacle is called diffraction. Diffraction is a wave characteristic and occurs for 

all types of waves. If diffraction is observed for some phenomenon, it is evidence that the 

phenomenon is a wave. Thus the horizontal diffraction of the laser beam after it passes through 

slits in Figure 27.7 is evidence that light is a wave. 

 

Figure 27.7: Huygens’s principle applied to a straight wavefront striking an opening. The edges 

of the wavefront bend after passing through the opening, a process called diffraction. The 

amount of bending is more extreme for a small opening, consistent with the fact that wave 

characteristics are most noticeable for interactions with objects about the same size as the 

wavelength. 

Although Christiaan Huygens thought that light was a wave, Isaac Newton did not. Newton felt 

that there were other explanations for color, and for the interference and diffraction effects that 

were observable at the time. Owing to Newton’s tremendous stature, his view generally 

prevailed. The fact that Huygens’s principle worked was not considered evidence that was direct 

enough to prove that light is a wave. The acceptance of the wave character of light came many 

years later when, in 1801, the English physicist and physician Thomas Young (1773–1829) did 

his now-classic double slit experiment (see Figure 27.8). 

 

Figure 27.8: Young’s double slit experiment. Here pure-wavelength light sent through a pair of 

vertical slits is diffracted into a pattern on the screen of numerous vertical lines spread out 

horizontally. Without diffraction and interference, the light would simply make two lines on the 

screen.  



Why do we not ordinarily observe wave behavior for light, such as observed in Young’s double 

slit experiment? First, light must interact with something small, such as the closely spaced slits 

used by Young, to show pronounced wave effects. Furthermore, Young first passed light from a 

single source (the Sun) through a single slit to make the light somewhat coherent. By coherent, 

we mean waves are in phase or have a definite phase relationship. Incoherent means the waves 

have random phase relationships. Why did Young then pass the light through a double slit? The 

answer to this question is that two slits provide two coherent light sources that then interfere 

constructively or destructively. Young used sunlight, where each wavelength forms its own 

pattern, making the effect more difficult to see. We illustrate the double slit experiment with 

monochromatic (single λ) light to clarify the effect. Figure 27.9 shows the pure constructive and 

destructive interference of two waves having the same wavelength and amplitude. 

 

Figure 27.9: The amplitudes of waves add. (a) Pure constructive interference is obtained when 

identical waves are in phase. (b) Pure destructive interference occurs when identical waves are 

exactly out of phase, or shifted by half a wavelength.  

When light passes through narrow slits, it is diffracted into semicircular waves, as shown in  

Figure 27.10 (a). Pure constructive interference occurs where the waves are crest to crest or 

trough to trough. Pure destructive interference occurs where they are crest to trough. The light 

must fall on a screen and be scattered into our eyes for us to see the pattern. An analogous 

pattern for water waves is shown in Figure 27.10 (b). Note that regions of constructive and 

destructive interference move out from the slits at well-defined angles to the original beam. 

These angles depend on wavelength and the distance between the slits, as we shall see below. 



 

Figure 27.10: Double slits produce two coherent sources of waves that interfere. (a) Light 

spreads out (diffracts) from each slit, because the slits are narrow. These waves overlap and 

interfere constructively (bright lines) and destructively (dark regions). We can only see this if the 

light falls onto a screen and is scattered into our eyes. (b) Double slit interference pattern for 

water waves are nearly identical to that for light. Wave action is greatest in regions of 

constructive interference and least in regions of destructive interference. (c) When light that has 

passed through double slits falls on a screen, we see a pattern such as this. (credit: PASCO)  

To understand the double slit interference pattern, we consider how two waves travel from the 

slits to the screen, as illustrated in Figure 27.11. Each slit is a different distance from a given 

point on the screen. Thus, different numbers of wavelengths fit into each path. Waves start out 

from the slits in phase (crest to crest), but they may end up out of phase (crest to trough) at the 

screen if the paths differ in length by half a wavelength, interfering destructively as shown in 

Figure 27.11 (a). If the paths differ by a whole wavelength, then the waves arrive in phase (crest 

to crest) at the screen, interfering constructively as shown in Figure 27.11 (b). More generally, if 

the paths taken by the two waves differ by any half-integral number of wavelengths [(1/2)λ, 

(3/2)λ, (5/2)λ, etc.], then destructive interference occurs. Similarly, if the paths taken by the two 

waves differ by any integral number of wavelengths (λ, 2λ, 3λ, etc.), then constructive 

interference occurs. 

 



Figure 27.11: Waves follow different paths from the slits to a common point on a screen. (a) 

Destructive interference occurs here, because one path is a half wavelength longer than the other. 

The waves start in phase but arrive out of phase. (b) Constructive interference occurs here 

because one path is a whole wavelength longer than the other. The waves start out and arrive in 

phase.  

Figure 27.12 shows how to determine the path length difference for waves traveling from two 

slits to a common point on a screen. If the screen is a large distance away compared with the 

distance between the slits, then the angle θ between the path and a line from the slits to the 

screen (see the figure) is nearly the same for each path. The difference between the paths is 

shown in the figure; simple trigonometry shows it to be dsinθ, where d is the distance between 

the slits. To obtain constructive interference for a double slit, the path length difference must be 

an integral multiple of the wavelength, or 

dsinθ = mλ, for m = 0,1,−1,2,−2,…(constructive). 

Similarly, to obtain destructive interference for a double slit, the path length difference must be a 

half-integral multiple of the wavelength, or 

dsinθ = (m+12)λ, for m = 0,1,−1,2,−2,…(destructive), 

where λ is the wavelength of the light, d is the distance between slits, and θ is the angle from the 

original direction of the beam as discussed above. We call m the order of the interference. For 

example, m=4 is fourth-order interference. 

 

Figure 27.12: The paths from each slit to a common point on the screen differ by an amount 

dsinθ, assuming the distance to the screen is much greater than the distance between slits (not to 

scale here).  

The equations for double slit interference imply that a series of bright and dark lines are formed. 

For vertical slits, the light spreads out horizontally on either side of the incident beam into a 

pattern called interference fringes, illustrated in Figure 27.13. The intensity of the bright fringes 

falls off on either side, being brightest at the center. The closer the slits are, the more is the 

spreading of the bright fringes. We can see this by examining the equation, 



dsinθ = mλ, for m = 0, 1, −1, 2, −2,…. 

For fixed λ and m, the smaller d is, the larger θ must be, since sinθ = mλ/d. This is consistent with 

our contention that wave effects are most noticeable when the object the wave encounters (here, 

slits a distance d apart) is small. Small d gives large θ, hence a large effect. 

 

Figure 27.13: The interference pattern for a double slit has an intensity that falls off with angle. 

The photograph shows multiple bright and dark lines, or fringes, formed by light passing through 

a double slit.  

Example - Finding a Wavelength from an Interference Pattern 

Suppose you pass light from a He-Ne laser through two slits separated by 0.0100 mm and find 

that the third bright line on a screen is formed at an angle of 10.95º relative to the incident beam. 

What is the wavelength of the light? 

Strategy 

The third bright line is due to third-order constructive interference, which means that m = 3. We 

are given d = 0.0100mm and θ = 10.95º. The wavelength can thus be found using the equation 

dsinθ = mλ for constructive interference. 

Solution 

The equation is dsinθ=mλ. Solving for the wavelength λ gives 

λ = dsinθ / m 

Substituting known values yields 

λ = (0.0100 mm)(sin 10.95º) /3 

= 6.33×10−4mm 

=633 nm. 



Discussion 

To three digits, this is the wavelength of light emitted by the common He-Ne laser. Not by 

coincidence, this red color is similar to that emitted by neon lights. More important, however, is 

the fact that interference patterns can be used to measure wavelength. Young did this for visible 

wavelengths. This analytical technique is still widely used to measure electromagnetic spectra. 

For a given order, the angle for constructive interference increases with λ, so that spectra 

(measurements of intensity versus wavelength) can be obtained. 

Example - Calculating Highest Order Possible 

Interference patterns do not have an infinite number of lines, since there is a limit to how big m 

can be. What is the highest-order constructive interference possible with the system described in 

the preceding example? 

Strategy and Concept 

The equation d sinθ = mλ (for m = 0, 1, −1, 2, −2,…) describes constructive interference. For 

fixed values of d and λ, the larger m is, the larger sinθ is. However, the maximum value that sinθ 

can have is 1, for an angle of 90º. (Larger angles imply that light goes backward and does not 

reach the screen at all.) Let us find which m corresponds to this maximum diffraction angle. 

Solution 

Solving the equation dsinθ = mλ for m gives 

m = dsinθλ  

Taking sinθ=1 and substituting the values of d and λ from the preceding example gives 

m = (0.0100 mm)(1) / 633 nm ≈ 15.8. 

Therefore, the largest integer m can be is 15, or 

m =15  

Discussion 

The number of fringes depends on the wavelength and slit separation. The number of fringes will 

be very large for large slit separations. However, if the slit separation becomes much greater than 

the wavelength, the intensity of the interference pattern changes so that the screen has two bright 

lines cast by the slits, as expected when light behaves like a ray. We also note that the fringes get 

fainter further away from the center. Consequently, not all 15 fringes may be observable. 

 



27.5 Multiple Slit Diffraction 

An interesting thing happens if you pass light through a large number of evenly spaced parallel 

slits, called a diffraction grating. An interference pattern is created that is very similar to the one 

formed by a double slit (see Figure 17.14). A diffraction grating can be manufactured by 

scratching glass with a sharp tool in a number of precisely positioned parallel lines, with the 

untouched regions acting like slits. These can be photographically mass produced rather cheaply. 

Diffraction gratings work both for transmission of light, as in Figure 17.14, and for reflection of 

light, as on butterfly wings and the Australian opal in Figure 17.15 or the CD pictured in the 

opening photograph of this chapter. In addition to their use as novelty items, diffraction gratings 

are commonly used for spectroscopic dispersion and analysis of light. What makes them 

particularly useful is the fact that they form a sharper pattern than double slits do. That is, their 

bright regions are narrower and brighter, while their dark regions are darker. Figure 17.16 shows 

idealized graphs demonstrating the sharper pattern. Natural diffraction gratings occur in the 

feathers of certain birds. Tiny, finger-like structures in regular patterns act as reflection gratings, 

producing constructive interference that gives the feathers colors not solely due to their 

pigmentation. This is called iridescence. 

 

Figure 27.14: A diffraction grating is a large number of evenly spaced parallel slits. (a) Light 

passing through is diffracted in a pattern similar to a double slit, with bright regions at various 

angles. (b) The pattern obtained for white light incident on a grating. The central maximum is 

white, and the higher-order maxima disperse white light into a rainbow of colors.  

 

Figure 27.15: (a) This Australian opal and (b) the butterfly wings have rows of reflectors that act 

like reflection gratings, reflecting different colors at different angles. (credits: (a) Opals-On-

Black.com, via Flickr (b) whologwhy, Flickr)  



 

Figure 27.16: Idealized graphs of the intensity of light passing through a double slit (a) and a 

diffraction grating (b) for monochromatic light. Maxima can be produced at the same angles, but 

those for the diffraction grating are narrower and hence sharper. The maxima become narrower 

and the regions between darker as the number of slits is increased.  

The analysis of a diffraction grating is very similar to that for a double slit (see Figure 27.17). As 

we know from our discussion of double slits in Young's Double Slit Experiment, light is 

diffracted by each slit and spreads out after passing through. Rays traveling in the same direction 

(at an angle θ relative to the incident direction) are shown in the figure. Each of these rays travels 

a different distance to a common point on a screen far away. The rays start in phase, and they can 

be in or out of phase when they reach a screen, depending on the difference in the path lengths 

traveled. As seen in the figure, each ray travels a distance dsinθ different from that of its 

neighbor, where d is the distance between slits. If this distance equals an integral number of 

wavelengths, the rays all arrive in phase, and constructive interference (a maximum) is obtained. 

Thus, the condition necessary to obtain constructive interference for a diffraction grating is 

dsinθ = mλ, for m =0,1,–1,2,–2,…(constructive), 

where d is the distance between slits in the grating, λ is the wavelength of light, and m is the 

order of the maximum. Note that this is exactly the same equation as for double slits separated by 

d. However, the slits are usually closer in diffraction gratings than in double slits, producing 

fewer maxima at larger angles. 



 

Figure 27.17: Diffraction grating showing light rays from each slit traveling in the same 

direction. Each ray travels a different distance to reach a common point on a screen (not shown). 

Each ray travels a distance dsinθ different from that of its neighbor.  

Where are diffraction gratings used? Diffraction gratings are key components of 

monochromators used, for example, in optical imaging of particular wavelengths from biological 

or medical samples. A diffraction grating can be chosen to specifically analyze a wavelength 

emitted by molecules in diseased cells in a biopsy sample or to help excite strategic molecules in 

the sample with a selected frequency of light. Another vital use is in optical fiber technologies 

where fibers are designed to provide optimum performance at specific wavelengths. A range of 

diffraction gratings are available for selecting specific wavelengths for such use. 

Example - Calculating Typical Diffraction Grating Effects 

Diffraction gratings with 10,000 lines per centimeter are readily available. Suppose you have 

one, and you send a beam of white light through it to a screen 2.00 m away. (a) Find the angles 

for the first-order diffraction of the shortest and longest wavelengths of visible light (380 and 

760 nm). (b) What is the distance between the ends of the rainbow of visible light produced on 

the screen for first-order interference? (See Figure 27.18.) 



 

Figure 27.18: The diffraction grating considered in this example produces a rainbow of colors 

on a screen a distance x = 2.00m from the grating. The distances along the screen are measured 

perpendicular to the x-direction. In other words, the rainbow pattern extends out of the page.  

Strategy 

The angles can be found using the equation 

dsinθ = mλ (for m =  0,1,–1,2,–2,…) 

once a value for the slit spacing d has been determined. Since there are 10,000 lines per 

centimeter, each line is separated by 1/10,000 of a centimeter. Once the angles are found, the 

distances along the screen can be found using simple trigonometry. 

Solution for (a) 

The distance between slits is d = (1 cm)/10,000 =1.00×10−4cm or 1.00×10−6m. Let us call the 

two angles θV for violet (380 nm) and θR for red (760 nm). Solving the equation dsinθV = mλ for 

sinθV, 

sinθV = (mλV) /d, 

where m=1 for first order and λV = 380nm = 3.80×10−7m. Substituting these values gives 

sinθV = 3.80×10−7m / 1.00×10−6m = 0.380 

  



Thus, the angle θV is 

θV = sin−1 0.380 = 22.33º 

Similarly, 

sinθR = 7.60×10−7m / 1.00×10−6m 

Thus, the angle θR is 

θR = sin−1 0.760 = 49.46º 

Notice that in both equations, we reported the results of these intermediate calculations to four 

significant figures to use with the calculation in part (b). 

Solution for (b) 

The distances on the screen are labeled yV and yR in Figure 27.18. Noting that tanθ = y/x, we can 

solve for yV and yR. That is, 

yV = xtanθV = (2.00 m)(tan 22.33º) = 0.815 m 

and 

yR = xtanθR = (2.00 m)(tan 49.46º) = 2.338 m 

The distance between them is therefore, 

yR − yV = 1.52 m 

Discussion 

The large distance between the red and violet ends of the rainbow produced from the white light 

indicates the potential this diffraction grating has as a spectroscopic tool. The more it can spread 

out the wavelengths (greater dispersion), the more detail can be seen in a spectrum. This depends 

on the quality of the diffraction grating—it must be very precisely made in addition to having 

closely spaced lines. 

Light passing through a single slit forms a diffraction pattern somewhat different from those 

formed by double slits or diffraction gratings. Figure 27.19 shows a single slit diffraction pattern. 

Note that the central maximum is larger than those on either side, and that the intensity decreases 

rapidly on either side. In contrast, a diffraction grating produces evenly spaced lines that dim 

slowly on either side of center. 



 

Figure 27.19: (a) Single slit diffraction pattern. Monochromatic light passing through a single 

slit has a central maximum and many smaller and dimmer maxima on either side. The central 

maximum is six times higher than shown. (b) The drawing shows the bright central maximum 

and dimmer and thinner maxima on either side.  

The analysis of single slit diffraction is illustrated in Figure 27.20. Here we consider light 

coming from different parts of the same slit. According to Huygens’s principle, every part of the 

wavefront in the slit emits wavelets. These are like rays that start out in phase and head in all 

directions. (Each ray is perpendicular to the wavefront of a wavelet.) Assuming the screen is 

very far away compared with the size of the slit, rays heading toward a common destination are 

nearly parallel. When they travel straight ahead, as in Figure 27.20 (a), they remain in phase, and 

a central maximum is obtained. However, when rays travel at an angle θ relative to the original 

direction of the beam, each travels a different distance to a common location, and they can arrive 

in or out of phase. In Figure 27.20 (b), the ray from the bottom travels a distance of one 

wavelength λ farther than the ray from the top. Thus, a ray from the center travels a distance λ/2 

farther than the one on the left, arrives out of phase, and interferes destructively. A ray from 

slightly above the center and one from slightly above the bottom will also cancel one another. In 

fact, each ray from the slit will have another to interfere destructively, and a minimum in 

intensity will occur at this angle. There will be another minimum at the same angle to the right of 

the incident direction of the light. 



 

Figure 27.20: Light passing through a single slit is diffracted in all directions and may interfere 

constructively or destructively, depending on the angle. The difference in path length for rays 

from either side of the slit is seen to be Dsinθ.  

At the larger angle shown in Figure 27.20(c), the path lengths differ by 3λ/2 for rays from the top 

and bottom of the slit. One ray travels a distance λ different from the ray from the bottom and 

arrives in phase, interfering constructively. Two rays, each from slightly above those two, will 

also add constructively. Most rays from the slit will have another to interfere with constructively, 

and a maximum in intensity will occur at this angle. However, all rays do not interfere 

constructively for this situation, and so the maximum is not as intense as the central maximum. 



Finally, in Figure 27.20 (d), the angle shown is large enough to produce a second minimum. As 

seen in the figure, the difference in path length for rays from either side of the slit is Dsinθ, and 

we see that a destructive minimum is obtained when this distance is an integral multiple of the 

wavelength. 

 

Figure 27.21: A graph of single slit diffraction intensity showing the central maximum to be 

wider and much more intense than those to the sides. In fact the central maximum is six times 

higher than shown here.  

Thus, to obtain destructive interference for a single slit, 

Dsinθ = mλ, for m = 1, –1, 2, –2, 3, …(destructive), 

where D is the slit width, λ is the light’s wavelength, θ is the angle relative to the original 

direction of the light, and m is the order of the minimum. Figure 27.21 shows a graph of intensity 

for single slit interference, and it is apparent that the maxima on either side of the central 

maximum are much less intense and not as wide. This is consistent with the illustration in Figure 

27.19 (b). 

Example - Calculating Single Slit Diffraction 

Visible light of wavelength 550 nm falls on a single slit and produces its second diffraction 

minimum at an angle of 45.0º relative to the incident direction of the light. (a) What is the width 

of the slit? (b) At what angle is the first minimum produced? 



 

Figure 27.22: A graph of the single slit diffraction pattern is analyzed in this example.  

Strategy 

From the given information, and assuming the screen is far away from the slit, we can use the 

equation Dsinθ = mλ first to find D, and again to find the angle for the first minimum θ1. 

Solution for (a) 

We are given that λ=550 nm, m=2, and θ2 = 45.0º. Solving the equation Dsinθ = mλ for D and 

substituting known values gives 

D = mλ /sinθ2 = 2(550 nm) /sin 45.0º 

= 1100×10−9 / 0.707 

= 1.56×10−6 

Solution for (b) 

Solving the equation Dsinθ = mλ for sinθ1 and substituting the known values gives 

sinθ1 = mλ/D = 1(550×10−9m) /1.56×10−6m 

Thus, the angle θ1 is 

θ1 = sin−10.354  

= 20.7º 



Discussion 

We see that the slit is narrow (it is only a few times greater than the wavelength of light). This is 

consistent with the fact that light must interact with an object comparable in size to its 

wavelength in order to exhibit significant wave effects such as this single slit diffraction pattern. 

We also see that the central maximum extends 20.7º on either side of the original beam, for a 

width of about 41º. The angle between the first and second minima is only about 

24º(45.0º−20.7º). Thus, the second maximum is only about half as wide as the central maximum. 

27.6 Rayleigh Criterion  

Light diffracts as it moves through space, bending around obstacles, interfering constructively 

and destructively. While this can be used as a spectroscopic tool—a diffraction grating disperses 

light according to wavelength, for example, and is used to produce spectra—diffraction also 

limits the detail we can obtain in images. Figure 27.23 (a) shows the effect of passing light 

through a small circular aperture. Instead of a bright spot with sharp edges, a spot with a fuzzy 

edge surrounded by circles of light is obtained. This pattern is caused by diffraction similar to 

that produced by a single slit. Light from different parts of the circular aperture interferes 

constructively and destructively. The effect is most noticeable when the aperture is small, but the 

effect is there for large apertures, too. 

 

Figure 27.23: (a) Monochromatic light passed through a small circular aperture produces this 

diffraction pattern. (b) Two-point light sources that are close to one another produce overlapping 

images because of diffraction. (c) If they are closer together, they cannot be resolved or 

distinguished.  

There are many situations in which diffraction limits the resolution. The acuity of our vision is 

limited because light passes through the pupil, the circular aperture of our eye. Be aware that the 

diffraction-like spreading of light is due to the limited diameter of a light beam, not the 

interaction with an aperture. Thus, light passing through a lens with a diameter D shows this 

effect and spreads, blurring the image, just as light passing through an aperture of diameter D 

does. So, diffraction limits the resolution of any system having a lens or mirror. Telescopes are 

also limited by diffraction, because of the finite diameter D of their primary mirror. 

Just what is the limit? To answer that question, consider the diffraction pattern for a circular 

aperture, which has a central maximum that is wider and brighter than the maxima surrounding it 

(similar to a slit) [see Figure 27.24 (a)]. It can be shown that, for a circular aperture of diameter 

D, the first minimum in the diffraction pattern occurs at θ=1.22λ/D (providing the aperture is 



large compared with the wavelength of light, which is the case for most optical instruments). The 

accepted criterion for determining the diffraction limit to resolution based on this angle was 

developed by Lord Rayleigh in the 19th century. The Rayleigh criterion for the diffraction limit 

to resolution states that two images are just resolvable when the center of the diffraction pattern 

of one is directly over the first minimum of the diffraction pattern of the other. See Figure 27.24 

(b). The first minimum is at an angle of θ = 1.22 (λ/D), so that two-point objects are just 

resolvable if they are separated by the angle 

θ = 1.22 (λ/D) 

  

where λ is the wavelength of light (or other electromagnetic radiation) and D is the diameter of 

the aperture, lens, mirror, etc., with which the two objects are observed. In this expression, θ has 

units of radians. 

 

Figure 27.24: (a) Graph of intensity of the diffraction pattern for a circular aperture. Note that, 

similar to a single slit, the central maximum is wider and brighter than those to the sides. (b) Two 

point objects produce overlapping diffraction patterns. Shown here is the Rayleigh criterion for 

being just resolvable. The central maximum of one pattern lies on the first minimum of the other.  

Example - Calculating Diffraction Limits of the Hubble Space Telescope 

The primary mirror of the orbiting Hubble Space Telescope has a diameter of 2.40 m. Being in 

orbit, this telescope avoids the degrading effects of atmospheric distortion on its resolution. (a) 

What is the angle between two just-resolvable point light sources (perhaps two stars)? Assume 

an average light wavelength of 550 nm. (b) If these two stars are at the 2 million light year 

distance of the Andromeda galaxy, how close together can they be and still be resolved? (A light 

year, or ly, is the distance light travels in 1 year.) 



Strategy 

The Rayleigh criterion stated in the equation θ = 1.22 (λ/D) gives the smallest possible angle θ 

between point sources, or the best obtainable resolution. Once this angle is found, the distance 

between stars can be calculated, since we are given how far away they are. 

Solution for (a) 

The Rayleigh criterion for the minimum resolvable angle is,  

θ = 1.22 (λ/D) 

Entering known values gives 

θ = 1.22 (550×10−9m) / 2.40 m  

= 2.80×10−7rad. 

Solution for (b) 

The distance s between two objects a distance r away and separated by an angle θ is s = rθ. 

Substituting known values gives 

s = (2.0×106ly)(2.80×10−7rad) 

= 0.56 ly. 

Discussion 

The angle found in part (a) is extraordinarily small (less than 1/50,000 of a degree), because the 

primary mirror is so large compared with the wavelength of light. As noticed, diffraction effects 

are most noticeable when light interacts with objects having sizes on the order of the wavelength 

of light. However, the effect is still there, and there is a diffraction limit to what is observable. 

The actual resolution of the Hubble Telescope is not quite as good as that found here. As with all 

instruments, there are other effects, such as non-uniformities in mirrors or aberrations in lenses 

that further limit resolution.  

The answer in part (b) indicates that two stars separated by about half a light year can be 

resolved. The average distance between stars in a galaxy is on the order of 5 light years in the 

outer parts and about 1 light year near the galactic center. Therefore, the Hubble can resolve 

most of the individual stars in Andromeda galaxy, even though it lies at such a huge distance that 

its light takes 2 million years for its light to reach us.  

Diffraction is not only a problem for optical instruments but also for the electromagnetic 

radiation itself. Any beam of light having a finite diameter D and a wavelength λ exhibits 

diffraction spreading. The beam spreads out with an angle θ given by the equation θ =1.22(λ/D). 



Take, for example, a laser beam made of rays as parallel as possible (angles between rays as 

close to θ=0º as possible) instead spreads out at an angle θ=1.22λ/D, where D is the diameter of 

the beam and λ is its wavelength. This spreading is impossible to observe for a flashlight, 

because its beam is not very parallel to start with. However, for long-distance transmission of 

laser beams or microwave signals, diffraction spreading can be significant (see Figure 27.25). To 

avoid this, we can increase D. This is done for laser light sent to the Moon to measure its 

distance from the Earth. The laser beam is expanded through a telescope to make D much larger 

and θ smaller. 

 

Figure 27.25: The beam produced by this microwave transmission antenna will spread out at a 

minimum angle θ =1.22 (λ/D) due to diffraction. It is impossible to produce a near-parallel beam, 

because the beam has a limited diameter.  

In most biology laboratories, resolution is presented when the use of the microscope is 

introduced. The ability of a lens to produce sharp images of two closely spaced point objects is 

called resolution. The smaller the distance x by which two objects can be separated and still be 

seen as distinct, the greater the resolution. The resolving power of a lens is defined as that 

distance x. An expression for resolving power is obtained from the Rayleigh criterion. In Figure 

27.26 (a) we have two-point objects separated by a distance x. According to the Rayleigh 

criterion, resolution is possible when the minimum angular separation is 

θ = 1.22(λ/D) = x/d  

where d is the distance between the specimen and the objective lens, and we have used the small 

angle approximation (i.e., we have assumed that x is much smaller than d), so that tanθ ≈ sinθ ≈θ. 

Therefore, the resolving power is, 

x = 1.22 (λd/D)  

Another way to look at this is by re-examining the concept of Numerical Aperture (NA) 

discussed in Microscopes. There, NA is a measure of the maximum acceptance angle at which 

the fiber will take light and still contain it within the fiber. Figure 27.26 (b) shows a lens and an 

object at point P. The NA here is a measure of the ability of the lens to gather light and resolve 



fine detail. The angle subtended by the lens at its focus is defined to be θ=2α. From the figure 

and again using the small angle approximation, we can write, 

sinα = (D/2) /d = D / 2d 

The NA for a lens is NA = nsinα, where n is the index of refraction of the medium between the 

objective lens and the object at point P. 

From this definition for NA, we can see that, 

x = 1.22 (λd/D) =1.22 (λ/ (2sinα) = 0.61 (λn /NA) 

In a microscope, NA is important because it relates to the resolving power of a lens. A lens with a 

large NA will be able to resolve finer details. Lenses with larger NA will also be able to collect 

more light and so give a brighter image. Another way to describe this situation is that the larger 

the NA, the larger the cone of light that can be brought into the lens, and so more of the 

diffraction modes will be collected. Thus, the microscope has more information to form a clear 

image, and so its resolving power will be higher. 

 

Figure 27.26: (a) Two points separated by at distance x and a positioned a distance d away from 

the objective. (credit: Infopro, Wikimedia Commons) (b) Terms and symbols used in discussion 

of resolving power for a lens and an object at point P. (credit: Infopro, Wikimedia Commons)  



One of the consequences of diffraction is that the focal point of a beam has a finite width and 

intensity distribution. Consider focusing when only considering geometric optics, shown in 

Figure 27.27 (a). The focal point is infinitely small with a huge intensity and the capacity to 

incinerate most samples irrespective of the NA of the objective lens. For wave optics, due to 

diffraction, the focal point spreads to become a focal spot (see Figure 27.27 (b)) with the size of 

the spot decreasing with increasing NA. Consequently, the intensity in the focal spot increases 

with increasing NA. The higher the NA, the greater the chances of photodegrading the specimen. 

However, the spot never becomes a true point. 

 

Figure 27.27: (a) In geometric optics, the focus is a point, but it is not physically possible to 

produce such a point because it implies infinite intensity. (b) In wave optics, the focus is an 

extended region. 

27.7 Thin Film Interference 

The bright colors seen in an oil slick floating on water or in a sunlit soap bubble are caused by 

interference. The brightest colors are those that interfere constructively. This interference is 

between light reflected from different surfaces of a thin film; thus, the effect is known as thin 

film interference. As noticed before, interference effects are most prominent when light interacts 

with something having a size similar to its wavelength. A thin film is one having a thickness t 

smaller than a few times the wavelength of light, λ. Since color is associated indirectly with λ and 

since all interference depends in some way on the ratio of λ to the size of the object involved, we 

should expect to see different colors for different thicknesses of a film, as in Figure 27.28. Some 

of the earliest measurements of such films and their effects were conducted by Agnes Pockels, a 

self-taught German chemist who investigated the characteristics of soapy and greasy films in 

water. Using homemade materials, Pockels developed a trough for measuring surface films and 

began conducting experiments. While scientific and societal barriers for women prevented her 

from publishing on her own, renowned scientist Lord Rayleigh supported her efforts and pushed 

for her work to be shared in the journal Nature. The trough Pockels invented became the basis 

for the contemporary version, as described below. 



 

Figure 27.28: These soap bubbles exhibit brilliant colors when exposed to sunlight. (credit: 

Scott Robinson, Flickr)  

What causes thin film interference?  Figure 27.29 shows how light reflected from the top and 

bottom surfaces of a film can interfere. Incident light is only partially reflected from the top 

surface of the film (ray 1). The remainder enters the film and is itself partially reflected from the 

bottom surface. Part of the light reflected from the bottom surface can emerge from the top of the 

film (ray 2) and interfere with light reflected from the top (ray 1). Since the ray that enters the 

film travels a greater distance, it may be in or out of phase with the ray reflected from the top. 

However, consider for a moment, again, the bubbles in Figure 27.28. The bubbles are darkest 

where they are thinnest. Furthermore, if you observe a soap bubble carefully, you will note it 

gets dark at the point where it breaks. For very thin films, the difference in path lengths of ray 1 

and ray 2 in Figure 27.29 is negligible; so why should they interfere destructively and not 

constructively? The answer is that a phase change can occur upon reflection. The rule is as 

follows: 

When light reflects from a medium having an index of refraction greater than that of the medium 

in which it is traveling, a 180º phase change (or a λ/2 shift) occurs.  



 

Figure 27.29: Light striking a thin film is partially reflected (ray 1) and partially refracted at the 

top surface. The refracted ray is partially reflected at the bottom surface and emerges as ray 2. 

These rays will interfere in a way that depends on the thickness of the film and the indices of 

refraction of the various media.  

If the film in Figure 27.29 is a soap bubble (essentially water with air on both sides), then there is 

a λ/2 shift for ray 1 and none for ray 2. Thus, when the film is very thin, the path length 

difference between the two rays is negligible, they are exactly out of phase, and destructive 

interference will occur at all wavelengths and so the soap bubble will be dark here. 

The thickness of the film relative to the wavelength of light is the other crucial factor in thin film 

interference. Ray 2 in Figure 27.29 travels a greater distance than ray 1. For light incident 

perpendicular to the surface, ray 2 travels a distance approximately 2t farther than ray 1. When 

this distance is an integral or half-integral multiple of the wavelength in the medium (λn = λ/n, 

where λ is the wavelength in vacuum and n is the index of refraction), constructive or destructive 

interference occurs, depending also on whether there is a phase change in either ray. 

Example - Calculating Non-reflective Lens Coating Using Thin Film Interference 

Sophisticated cameras use a series of several lenses. Light can reflect from the surfaces of these 

various lenses and degrade image clarity. To limit these reflections, lenses are coated with a thin 

layer of magnesium fluoride that causes destructive thin film interference. What is the thinnest 

this film can be, if its index of refraction is 1.38 and it is designed to limit the reflection of 550-

nm light, normally the most intense visible wavelength? The index of refraction of glass is 1.52. 



Strategy 

Refer to Figure 27.29 and use n1=1.00 for air, n2=1.38, and n3=1.52. Both ray 1 and ray 2 will 

have a λ/2 shift upon reflection. Thus, to obtain destructive interference, ray 2 will need to travel 

a half wavelength farther than ray 1. For rays incident perpendicularly, the path length difference 

is 2t. 

Solution 

To obtain destructive interference here, 

2t = λn2 /2 

where λn2 is the wavelength in the film and is given by λn2 = λ/n2 

Thus, 

2t = (λ/n2) /2 

Solving for t and entering known values yields 

t = (λ/n2 )/ 4 = [(550 nm)/1.38] /499.6 nm. 

Discussion 

Films such as the one in this example are most effective in producing destructive interference 

when the thinnest layer is used, since light over a broader range of incident angles will be 

reduced in intensity. These films are called non-reflective coatings; this is only an approximately 

correct description, though, since other wavelengths will only be partially cancelled. Non-

reflective coatings are used in car windows and sunglasses. 

Thin film interference is most constructive or most destructive when the path length difference 

for the two rays is an integral or half-integral wavelength, respectively. That is, for rays incident 

perpendicularly, 2t = λn, 2λn, 3λn, … or 2t = λn/2, 3λn/2, 5λn/2, …. To know whether 

interference is constructive or destructive, you must also determine if there is a phase change 

upon reflection. Thin film interference thus depends on film thickness, the wavelength of light, 

and the refractive indices. For white light incident on a film that varies in thickness, you will 

observe rainbow colors of constructive interference for various wavelengths as the thickness 

varies. 

Problem-Solving Strategies for Wave Optics 

Step 1. Examine the situation to determine that interference is involved. Identify whether slits or 

thin film interference are considered in the problem. 



Step 2. If slits are involved, note that diffraction gratings and double slits produce very similar 

interference patterns, but that gratings have narrower (sharper) maxima. Single slit patterns are 

characterized by a large central maximum and smaller maxima to the sides. 

Step 3. If thin film interference is involved, take note of the path length difference between the 

two rays that interfere. Be certain to use the wavelength in the medium involved, since it differs 

from the wavelength in vacuum. Note also that there is an additional λ/2 phase shift when light 

reflects from a medium with a greater index of refraction. 

Step 4. Identify exactly what needs to be determined in the problem (identify the unknowns). A 

written list is useful. Draw a diagram of the situation. Labeling the diagram is useful. 

Step 5. Make a list of what is given or can be inferred from the problem as stated (identify the 

knowns). 

Step 6. Solve the appropriate equation for the quantity to be determined (the unknown), and 

enter the knowns. Slits, gratings, and the Rayleigh limit involve equations. 

Step 7. For thin film interference, you will have constructive interference for a total shift that is 

an integral number of wavelengths. You will have destructive interference for a total shift of a 

half-integral number of wavelengths. Always keep in mind that crest to crest is constructive 

whereas crest to trough is destructive. 

Step 8. Check to see if the answer is reasonable: Does it make sense? Angles in interference 

patterns cannot be greater than 90º, for example. 

27.8 Polarization 

Light is one type of electromagnetic (EM) wave. As noted earlier, EM waves are transverse 

waves consisting of varying electric and magnetic fields that oscillate perpendicular to the 

direction of propagation (see Figure 27.30). There are specific directions for the oscillations of 

the electric and magnetic fields. Polarization is the attribute that a wave’s oscillations have a 

definite direction relative to the direction of propagation of the wave. (This is not the same type 

of polarization as that discussed for the separation of charges.) Waves having such a direction are 

said to be polarized. For an EM wave, we define the direction of polarization to be the direction 

parallel to the electric field. Thu,s we can think of the electric field arrows as showing the 

direction of polarization, as in Figure 27.30. 



 

Figure 27.30: An EM wave, such as light, is a transverse wave. The electric and magnetic fields 

are perpendicular to the direction of propagation.  

To examine this further, consider the transverse waves in the ropes shown in Figure 27.31. The 

oscillations in one rope are in a vertical plane and are said to be vertically polarized. Those in the 

other rope are in a horizontal plane and are horizontally polarized. If a vertical slit is placed on 

the first rope, the waves pass through. However, a vertical slit blocks the horizontally polarized 

waves. For EM waves, the direction of the electric field is analogous to the disturbances on the 

ropes. 

 

Figure 27.31: The transverse oscillations in one rope are in a vertical plane, and those in the 

other rope are in a horizontal plane. The first is said to be vertically polarized, and the other is 

said to be horizontally polarized. Vertical slits pass vertically polarized waves and block 

horizontally polarized waves.  

The Sun and many other light sources produce waves that are randomly polarized (see Figure 

27.32). Such light is said to be unpolarized because it is composed of many waves with all 

possible directions of polarization. Polaroid materials, invented by the founder of Polaroid 

Corporation, Edwin Land, act as a polarizing slit for light, allowing only polarization in one 

direction to pass through. Polarizing filters are composed of long molecules aligned in one 

direction. Thinking of the molecules as many slits, analogous to those for the oscillating ropes, 

we can understand why only light with a specific polarization can get through. The axis of a 

polarizing filter is the direction along which the filter passes the electric field of an EM wave 

(see Figure 27.33). 



 

Figure 27.32: The slender arrow represents a ray of unpolarized light. The bold arrows represent 

the direction of polarization of the individual waves composing the ray. Since the light is 

unpolarized, the arrows point in all directions.  

 

Figure 27.33: A polarizing filter has a polarization axis that acts as a slit passing through electric 

fields parallel to its direction. The direction of polarization of an EM wave is defined to be the 

direction of its electric field.  

Figure 27.34 shows the effect of two polarizing filters on originally unpolarized light. The first 

filter polarizes the light along its axis. When the axes of the first and second filters are aligned 

(parallel), then all of the polarized light passed by the first filter is also passed by the second. If 

the second polarizing filter is rotated, only the component of the light parallel to the second 

filter’s axis is passed. When the axes are perpendicular, no light is passed by the second. 

Only the component of the EM wave parallel to the axis of a filter is passed. Let us call the angle 

between the direction of polarization and the axis of a filter θ. If the electric field has an 

amplitude E, then the transmitted part of the wave has an amplitude Ecosθ (see Figure 27.35). 

Since the intensity of a wave is proportional to its amplitude squared, the intensity I of the 

transmitted wave is related to the incident wave by 

I = I0 cos2θ 

where I0 is the intensity of the polarized wave before passing through the filter. (The above 

equation is known as Malus’s law.) 



 

Figure 27.34: The effect of rotating two polarizing filters, where the first polarizes the light. (a) 

All of the polarized light is passed by the second polarizing filter, because its axis is parallel to 

the first. (b) As the second is rotated, only part of the light is passed. (c) When the second is 

perpendicular to the first, no light is passed. (d) In this photograph, a polarizing filter is placed 

above two others. Its axis is perpendicular to the filter on the right (dark area) and parallel to the 

filter on the left (lighter area). (credit: P.P. Urone)  

 

Figure 27.35: A polarizing filter transmits only the component of the wave parallel to its axis, 

Ecosθ, reducing the intensity of any light not polarized parallel to its axis.  

Polarization by Reflection 

By now you can probably guess that Polaroid sunglasses cut the glare in reflected light because 

that light is polarized. You can check this for yourself by holding Polaroid sunglasses in front of 

you and rotating them while looking at light reflected from water or glass. As you rotate the 

sunglasses, you will notice the light gets bright and dim, but not completely black. This implies 

the reflected light is partially polarized and cannot be completely blocked by a polarizing filter. 

Figure 27.36 illustrates what happens when unpolarized light is reflected from a surface. 

Vertically polarized light is preferentially refracted at the surface, so that the reflected light is left 

more horizontally polarized. The reasons for this phenomenon are beyond the scope of this text, 



but a convenient mnemonic for remembering this is to imagine the polarization direction to be 

like an arrow. Vertical polarization would be like an arrow perpendicular to the surface and 

would be more likely to stick and not be reflected. Horizontal polarization is like an arrow 

bouncing on its side and would be more likely to be reflected. Sunglasses with vertical axes 

would then block more reflected light than unpolarized light from other sources. 

 

Figure 27.36: Polarization by reflection. Unpolarized light has equal amounts of vertical and 

horizontal polarization. After interaction with a surface, the vertical components are 

preferentially absorbed or refracted, leaving the reflected light more horizontally polarized. This 

is akin to arrows striking on their sides bouncing off, whereas arrows striking on their tips go 

into the surface.  

Since the part of the light that is not reflected is refracted, the amount of polarization depends on 

the indices of refraction of the media involved. It can be shown that reflected light is completely 

polarized at a angle of reflection θb, given by 

tanθb = n2 /n1  

where n1 is the medium in which the incident and reflected light travel and n2 is the index of 

refraction of the medium that forms the interface that reflects the light. This equation is known as 

Brewster’s law, and θb is known as Brewster’s angle, named after the 19th-century Scottish 

physicist who discovered them. 

Polarization by Scattering 

If you hold your Polaroid sunglasses in front of you and rotate them while looking at blue sky, 

you will see the sky get bright and dim. This is a clear indication that light scattered by air is 

partially polarized. Figure 27.37 helps illustrate how this happens. Since light is a transverse EM 

wave, it vibrates the electrons of air molecules perpendicular to the direction it is traveling. The 

electrons then radiate like small antennae. Since they are oscillating perpendicular to the 

direction of the light ray, they produce EM radiation that is polarized perpendicular to the 



direction of the ray. When viewing the light along a line perpendicular to the original ray, as in 

Figure 27.37, there can be no polarization in the scattered light parallel to the original ray, 

because that would require the original ray to be a longitudinal wave. Along other directions, a 

component of the other polarization can be projected along the line of sight, and the scattered 

light will only be partially polarized. Furthermore, multiple scattering can bring light to your 

eyes from other directions and can contain different polarizations. 

 

Figure 27.37: Polarization by scattering. Unpolarized light scattering from air molecules shakes 

their electrons perpendicular to the direction of the original ray. The scattered light therefore has 

a polarization perpendicular to the original direction and nonparallel to the original direction.  

Many crystals and solutions rotate the plane of polarization of light passing through them. Such 

substances are said to be optically active. Examples include sugar water, insulin, and collagen 

(see Figure 27.38). In addition to depending on the type of substance, the amount and direction 

of rotation depends on a number of factors. Among these is the concentration of the substance, 

the distance the light travels through it, and the wavelength of light. Optical activity is due to the 

asymmetric shape of molecules in the substance, such as being helical. Measurements of the 

rotation of polarized light passing through substances can thus be used to measure 

concentrations, a standard technique for sugars. It can also give information on the shapes of 

molecules, such as proteins, and factors that affect their shapes, such as temperature and pH. 

 



Figure 27.38: Optical activity is the ability of some substances to rotate the plane of polarization 

of light passing through them. The rotation is detected with a polarizing filter or analyzer.  

For examples and answers, please refer to OpenStax.com questions and answers given on 

their website or to the College Physics 2e - https://openstax.org/details/books/college-

physics-2e 
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